句子积累

1 评估

The classification performance is evaluated using two measures: the top-1 and top-5 error. 分类性能使用个指标进行评估: top-1 错误和 top-5 错误。

The former is a multi-class classification error, the proportion of incorrectly classified images; the latter is the main evaluation criterion used in ILSVRC, and is computed as the proportion of images such that the ground-truth category is outside the top-5 prediced categories. 前者是多类分类错误, 即错误分类图像的比例; 后者是 ILSVRC 中使用的主要评估标准, 计算方法是将真实类别不在预测的前 5 个类中的图像比例。

We compare our results with the state of the art in Table 7. 我们在表 7 中将我们的结果与现有技术进行了比较。

Our architecture achieves the best result, outperforming a single GoogLeNet by 0.9%. 我们的架构取得了最佳结果, 单个 GoogLeNet 高出 0.9%。

The results are promising. 该结果颇具前景

2 模型描述

The main difference is that we replace the logistic regression objective with a Euclidean loss, which penalises the deviation of the predicted bounding box parameters from the ground-truth. 主要区别在于我们用欧几里得损失代替了逻辑回归目标, 该损失惩罚预测边界框参数与真实值的偏差。

The last fully-connected layer was initialised randomly and trained from scratch. 最后一个全连接层随机初始化并从头开始训练。

看完说谢谢了吗?哈哈哈~
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇